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Further relations amongst infinite series and products: 
11. The evaluation of three-dimensional lattice sums 

I J Zucker 
Department of Physics, King's College, London WC2R 2LS, UK 

Received 22 March 1989 

Abstract. New relations amongst infinite series and infinite products are given. A survey 
of these and previous results is presented. These relations provide a way of evaluating 
certain three-dimensional lattice sums in closed form. Over 50 such evaluations are 
displayed. 

1. Introduction 

In a previous communication (Zucker 1987, henceforth referred to as I) properties of 
the infinite series 

e( k, I) = q(kn+ ' )2  J=c ( - 1 ) n q ( k n + / ) '  

+ ( k ,  1) = E  ( - 1 ) n ( n - 1 ) / 2  ( k n + l ) '  6 =C ( - 1 ) n ( n + 1 ) / 2  ( k n + l ) '  (1) 
4 '  4 

and their relations with the infinite products 

Q(k ,  I) =n ( 1  - qk" - ' )  Q ( k ,  l ) = n ( l + q k n - ' )  (2) 

were discussed. Z denotes summation over integer n from --CO to CO, whereas I7 denotes 
product over n from one to CO. The set of relations given in ( 1 )  will be referred to as 
0. It was shown in I how to express 0 in terms of Q and 0. Here we shall augment 
0 with another set of infinite series, X ,  defined by 

It will be shown here that certain members of 0 and X may be expressed in a particularly 
apt form of infinite product. This, together with the fact that certain members of the 
set 0' given by 
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118 I J Zucker 

may also be expressed as infinite products, allows the evaluation of many three- 
dimensional lattice sums to be accomplished. It is not known whether the list given 
here is exhaustive, but the methods used here indicate clearly how other three- and 
many-dimensional sums might be evaluated in closed form. 

Some further notational additions to those introduced in I have been made here. 
The particularly apt forms of infinite product in which 0 and X may be expressed 
involve the Euler partition function 

and this will be written ( k ) .  Sometimes a slightly modified form of this is required, 
namely the Dedekind 7-function 

and this will be written [ k ] .  Jacobi was particularly fond of using the products 

Q* = n (1 + qZn-1) Q 3  = n (1 - q2"- ' ) .  

For conciseness these will be denoted w, x, z, y respectively. A dictionary is easily 
established between the two sets of notation. Thus 

from which the well known result xyz = 1 is immediately obtained. Expressions for 0 
and X in terms of ( k )  will be termed Eulerian, whereas if given in terms of w, x, y,  z 
they will be called Jacobian. When an expression has a Jacobian representation such 
that different parts of it have different powers of the variable q as their argument, this 
will be denoted by a vertical bar with q to the given power written after it, if it is not 
equal to q. Thus it will be shown later that 

8 (3 ,1)1q ' /~  = q ' / 3 ~ j ~ ~ ~ l q 3 .  ( 5 )  

This means that on the LHS of ( 5 ) ,  q has been replaced by q' l3 ,  whereas on the RHS, 
q"3z is as it stands, but wxy has argument q3 for q. 

In the course of deriving the results presented here, several simple operations were 
employed, and these are now described. O ( n )  is the operation which replaces q by 
q" in any expression. In particular, the following results were often used: 

O ( f )  w = wy O(4)X = xz O ( 2 ) w  = wx 0 ( 2 ) y = y z .  

s w = w  s x  = x sy = z sz  = y 

S is the operation which changes q to -q  in any expression. This leads to 

for even integer k 

Expressions which are related by the S operation will be termed sign-conjugate. 
A further operation on q-series and products may be performed by means of the 

Poisson transformation denoted here by P. This transforms expressions in terms of 
q = e-"' into those of a complementary variable p = e-"". The fundamental result for 
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q-series is 

( 7 )  

and, from relations amongst 0 given in I ,  the Poisson transform of any member of 0 
may be found. They are as follows: 

For transforming products the most important result is expressed in terms of the 
Dedekind 77 function. This is 

which enables one to transform any result in Eulerian form to another in that form, 
since the P operation is multiplicatively transitive. That is, P [  a][ 6][ c] . . . = 

P[a]P[b]P[c] . . . . The Jacobian products transform thus 

Y P[q l / '2w]  = p l ' l * w  ~ [ ~ 1 / 1 2 ~ ]  = 2-1/2p-1/24 
(12) p[q - l /24y]  = 2 1 / 2 p 1 / 1 2 x  p[q-L/24z] = pl/*4z.  

Expressions related by P transformations will be termed Poisson conjugate. Since q 
and p are completely interchangeable, a Poisson transform of a q relation will yield 
another q relation unless the expression is self-conjugate. 

One further transformation will be applied, but only to q-series. This is the Mellin 
transform defined by 

Here the Mellin transform will be applied to all q-series after replacing q by e-'. As 
examples of such transformations taken from 0 and a', consider first 

g(6, 1 ) = 1  ( - l ) n q ( 6 n + 1 ) 2 = q - q 5 2 - q 7 2 + q 1 1 2  . . . .  
Replacing q by e-' and taking the Mellin transform, we have 

1 
MJ(6, l ) = - z ( - l ) "  t ' ~ ' e ~ p [ - t ( 6 n + l ) ~ ]  df 

T ( S )  

where L12 is a positive parity Dirichlet L-series of degree 2s. The properties of these 
series are described briefly in the appendix. Similarly, if we perform the same operations 
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on @(6 ,  l ) ,  we have 

p(6,  1 ) = c  (-1)"(6n+l)q '6"+1)2= q+5q52-7q'2-11q'12... 

MR(6, 1 ) s  1+52s-'-725-'-112*-'.. .=(l+31-2')L-4(2S-l)  

where L-4 is a negative parity L-series of degree 2s - 1. In general, Mellin transforms 
of members of 0 and X always yield positive parity L-series of degree 2s, whereas 
Mellin transforms of members of 0' and X'give negative parity L-series of degree 2s - 1. 

Some comments are appropriate here on the traditional notation generally accepted 
for the Jacobian &functions as found in Whittaker and Watson (1946). These are 

CO 

e,(z, q )  = 2 C sin[(2n + ~ ) z ] q ( " + ~ / ~ ' ~  
0 

10 

e2(z, 4 )  = 2 C  COS[(^^ + i ) ~ ] q ( ~ + ' / ~ ) ~  

e3 = cos(2nz)qf12 e4 = C (-1)" cos(2nz)qf12. 
0 

Most, and possibly all, of 0 and X could be accommodated by this notation. However, 
here we wish to emphasise q as a variable rather than as a parameter, with z equal to 
zero. In this case the Jacobian series which play a prominent role are 

e3 = C q n 2  e4=C (-i)"qn2. 

The expressions for el, and O2 lack the symmetry of the summation being carried out 
over all n. This may be remedied by writing 

e2 = C q ( 2 n + 1 ) 2 / 4  - - 2 q(4n+1)2 /4  = e(2, 1)lq'/4 = 2 8 ( 4 , 1 ) ~ ~ ~ / ~  

e; = 2 (4n + 1)q(4n+1)2/4= 2ey4, 1)lqi/4. 

This led the author at one time (Glasser and Zucker 1980) to augment these functions 
with 

e5  = 2 (-1)n~(4n+1)~/4= 28(4,1)jq'/4 

e:=2 ( - i )n(4n+i)q(4n+1)2=28' (4 ,  1 ) ~ ~ ~ / ~ .  

0;  was a particularly inapt choice of notation and will henceforth be discarded. O5 at 
least demonstrated some symmetry amongst the traditional 8-functions and will be 
retained. Thus the well known classical relation 2028, = e:(q'/') has its counterpart 
in 28204= e:(q1/2), and symmetries amongst e2-e5 are further displayed when S- and 
P-transformations are performed on them. Thus we have 

se3 = e4 s[ e2(g'/2)/q1/2] = e 5 ( q 1 / * ) / p 2  

All these transformations are readily carried out when 02-05 are put in Eulerian or 
Jacobian form. 
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2. 0 and X in Eulerian and Jacobian form 

Table 1 displays members of 0 and X which may be expressed in Eulerian form. In 
I it was shown how any member of 0 could be expressed in an infinite product form, 
but it is only for small values of k and 1 that these products are able to be made 
Eulerian. This is illustrated with the following two examples from table 1. Consider 
first 8(4,1). From (15) in I it may be written 

@(4,1) = qIQ(8,0)(?(8,2)(?(8, 6)lq4= qlQ(4,0)0(4,1)(?(4, 3)lq8 

=qlQ(4,0)0(2,  1)1q8=q1(4) - 1q8=q/wxz1q8. 
(2)’ 

(1)(4) 

Hence 8(4, l)lql/’ = q”8(2)2/(1) = q’’*wxz. 
As a second example 8(3,1) will be examined. Again from (15) in I it is straightfor- 

ward to write 8(3,1) = qlQ(6,O)Q(6,1)Q(6, 5 ) l q 3 .  From (10) in I we have Q(1,O) = 
Q(6,O)Q(6,1)Q(6,2)Q(6,3)Q(6,4)Q(6,5). hence 

But 

and 

Thus 

In a similar fashion all the elements of 0 in table 1 were constructed. The application 
of the sign transformation to 0 always led to other elements in 0. However, on 
applying the Poisson transformation to 0, although elements of 0 were mainly obtained, 
in some cases elements of X were found. An example of each case is given. 

Consider first 8( 1,O) = ( 1)2/(2) = [ 112/[2]. Taking Poisson transforms of both sides 
we obtain 

from (8) (2?1+1)~/4 P8( 1,O) = - p Ji 
whereas 

from (1 1). [4i2 p -  =2- 
K:l21 4 2 1  

Thus 



Table 1. Members of 0 and X which may be expressed in Eulerian form. 

Series Conventional Eulerian Jacobian 

(Tl.1) 

(T1.2a) 

(T1.2b) 

( T 1 . 3 ~ )  

(T1.36) 

(T1.4) 

(T1.5) 

(T1.6a) 

(T1.6b) 

(T1.7a) 

(T1.76) 

(T1.8) 

(T1.9a) 

(T1.96) 

(T1 .9~)  

(T1.lO) 

(T1.11) 

(T1.120) 

(T1.12b) 

(T1.13a) 

(T1.13b) 

(T1.14) 
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This in conventional notation is the well known result PO4 = 0 2 .  When the same 
operations are applied to O(3, l ) ,  however, we have 

Thus 

Equating these two expressions and replacing p‘ l9  by 9, we obtain 

Following the procedures just described, all the members of sets O and X given in 
table 1 were constructed. In table 2 the sign, Poisson and Mellin transforms of these 
series are given. As previously described, the Mellin transforms of all the series in 
table 1 yield a Dirichlet L-series whose character depends on the series. Since L-series 

Table 2. The sign, Poisson and Mellin transforms of the series 0 and X .  The argument 
of the L-series is (2s). 

Series Sign Transform Poisson Transform Mellin Transform 

2L,t  

-2(1 -21-Z’)L1t 

21+3s(1 - 2 - 2 5 ) ~ 1  

3’(1-3-”)L~ 

3’(1 -21-2r)(1 -3-”)LI 

8’LR 

24’(1 -2-25)(1 - 3 - ” ) L ,  

24’LI2 

24’( 1 + 3X2’ )L, 

24’L2, 

1 Ll -(1-31-Z’ 

(1-31-25 )(1 -2I-2S)L1 

8”(1 -31-2s)(1 - T 2 ’ ) L 1  

8”(1 +3’-’*)L8 

(T2.1) 

(T2.2) 

(T2.3) 

(T2.4) 

(T2.5) 

(T2.6) 

(T2.7) 

(T2.8) 

(T2.9) 

(T2.10) 

(T2.11) 

(T2.12) 

(T2.13) 

(T2.14) 

? These are actually the Mellin transforms of O(1, 0) - 1 and 8( 1,O) - 1. 
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of different character are algebraically independent, the independence or otherwise of 
the various elements of 0 and X may easily be established. 

In table 3 certain products of the elements of 0 and X which exhibit particularly 
simple Eulerian and Jacobian structures are given. Since the history of expressing 
infinite series in product form and vice versa goes back to Euler, it has not been 
possible to ascertain with certainty the original sources of the results given in table 1. 
After a considerable literature search, it is believed that the following attributions of 
the results in table 1 are correct. Result (T1.l) is due to Jacobi. Results (T1.2) and 
(T1.3) are due to Gauss. Result (T1.9) is Euler’s classic result, the very first of its kind. 
Results (T1.6) and (T1.7) have been given by Kac (1978), who claims them as new. 
He also gives (T1.ll) and (T1.13) as new, but these results go back to Ramanujan 
(1957). Results (T1.4) and (T1.lO) as given here are new, though (T1.4) is implied by 
Zucker (1975). However, Smith (1865) quotes some results of Jacobi from which (T1.4) 
and (T1.lO) may be deduced. As far as we know (TlS) ,  (T1.8), T1.12) and (T1.14) 
are new as given here, though Borwein and Borwein (1986) establish something 
equivalent to (T1.12) in terms of conventional notation. 

The interplay between the results in table 1 is often bizarre. Thus, at first sight the 
relation between d(6,  1) and 8(4, 1) implied by their Mellin transforms containing the 
same L-series is not at all apparent. But the relationship may be established as follows. 

Table 3. Certain products of elements of 0 and X which exhibit particularly simple 
Eulerian and Jacobian structures. 

Combination Eulerian form Jacobian form 

q”*w2y 

q w 2 2  

(T3.1) 

(T3.2) 

(T3.3) 

(T3.4) 

(T3.5) 

(T3.6) 

(T3.7) 

(T3.8) 

(T3.9) 

(T3.10) 
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From table 1 we have 

Multiplying both sides by q1I8(3)( 12)/(6)2 gives 

or 

4(6,  l)lq1/8 =f[8(4, l)lq9/*+ 8(4, l ) /ql”]  (14) 

which is equivalent to (T1.8). Other similar connections may be found. 

3. 0’ and X’ in Eulerian and Jacobian form 

It has not been found possible to express 0’ and X ’  in infinite product form as was 
done for 0. However, 0’ may be found in terms of Lambert series, and if these are 
recognised, then sometimes these may be expressed as infinite products. This is 
illustrated now for e’( k, 1). The Jacobi triple product identify may be written 

c ( - l )nanqn2=  (2) n (1 -aq2”-’)(1 - a q  - I  - 1 ) .  (15) 

The following operations are carried out in this order: ( i )  replace a by a k ;  (ii) 
multiply both sides of (15) by a’; (iii) differentiate logarithmically with respect to a, 
and multiply by a ;  (iv) replace q by q k 2  and a by q”. Then it is found that 

Similar expressions for other members of 0’ may be found. Series such as those 
found on the RHS of (16) are known as Lambert series. In order to identify them 
Mellin transforms are formed. For example, consider k = 4 ,  and 1 = 1. We have 

The Mellin transform of the RHS of (17) is 4LI ( s )L4(s ) .  But it is a well known 
result (Hardy and Wright 1980) going back to Lorenz (1871) and implicit in Jacobi that 

~ [ e : - i ] =  M [ e 2 ( i , o ) - 1 ] = 4 L 1 ( ~ ) L _ , ( ~ ) .  

R(4, l)lq1’8= 8(4, l)lq1’8e2(1, 0). 

So the RHS of (17) is just 02(1, 0) - 1, and thus 

Then, using the results of table 1, e’(4,l) may be put into Eulerian and Jacobian forms. 
As a further example, consider k = 6, and 1 = 1. This gives 
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The Mellin transform of the RHS of (18) yields ~ L ~ ( s ) L - ~ ( s ) ,  which is also 
M [ 0 3 0 3 ( q 3 )  + 0202(q3)  - 11 (Zucker and Robertson 1976). Hence 

R(6, i)lq1/24 = 8(6, ~ ) l q ’ / ~ ~ [ e ~ e ~ ( q ~ ) +  e2e2(q3)] .  

This is then the sum of two Eulerian products, and it does not seem possible to collapse 
these into a single form. 

Following the procedures just described, and also using sign and Poisson transfor- 
mations, the results collated in table 4 were derived. Again, relations among some of 
these expressions which are apparent from their Mellin transforms are not immediately 
evident from their Eulerian forms. Thus the Mellin transforms of O’(3, l),  8’(3,1) and 

Table 4. Transforms of various series. The argument of the L-series is (2s - 1). 

Series Eulerian form Jacobian form Mellin transform 

41/3w3xZz2  3’(1 +22-2s)L-3 

1/8 w3y3 2 3 3 ~ - ,  

41 /8w3z3 2 3 3 ~ - 8  

(T4.1) 

(T4.2) 

(T4.3) 

(T4.4) 

(T4.5) 

(T4.5) 

(T4.7) 

(T4.8) 

(T4.9) 

(T4.10) 

O‘(6, 1) all contain L - 3 ,  and hence must be related. This may be demonstrated from 
two classical results for O functions. The first is O3 = 03(q4) + 02(q4)  which, if written 
in Eulerian form, is 

Multiplying both sides by q’/3(4)2 gives 

or 
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Similarly, from the classical result 203( q4) = 4 + 04, we obtain 

2ey6, i)lqi/3 = e y 3 , 1 ) 1 ~ ~ / ~ +  P(3, 1)lqiI3. 

The results in table 4 also have a long history. The oldest is Jacobi's famous result 
(T4.3) which is given in Hardy and Wright (1980) as 

m 

C (-1)"(2n + 1)qn(n+i) /2  = ~ ( i - q n ) ~ = ( i ) ~ .  
n =O 

As indicated previously, this may be put into the more symmetric form 

ey4 , l )  = (4n + i)q(4n+i)2 = 4(8)3 = [813 

as it appears in table 4. Results (T4.1) and (T4.5) are usually ascribed to Gordon 
(1961). However, they go back at least to Ramanujan (1916), who quotes them along 
with Jacobi's result without reference, as though they were well known. But formulae 
given by Ramanujan without comment imply several possibilities. It may be (a) he 
did not know a reference, (b) he thought the formulae too well known to need a 
reference or (c) that the formulae were his own, or any mixture of the above. Thus 
(T4.1) and (T4.5) may well have originated with Ramanujan, and up to now no earlier 
source has been found. Result (T4.2) is given by Kac (1978) and is simply a sign 
transform of (T4.1). Result (T4.4) or its equivalent first seems to have appeared in 
Glasser and Zucker (1980), and is simply a sign transform of (T4.3). Result (T4.6) as 
presented here is new. It was suggested by Borwein and Borwein (1986) that performing 
the equivalent of a sign transformation on what was essentially e'(6,l) would yield 
an interesting relation. The result is in fact 4'(6.1) and (T4.6). The other results in 
table 4 are new, and have been obtained by inverting the Mellin transforms of the 
series involved. 

4. The evaluation of three-dimensional sums 

It will be observed from tables 1 and 4 that 0 and X contain w to a single power 
whereas 0' and X '  contain w3.  It is thus possible to combine three suitable members 
of 0 and X together to form a 0' or X ' .  For example, remembering that xyz = 1, 

e ( i ,  o)G(i,o)le(4, ~ ) l q ' / ~ =  q i 1 4 ~ ~ 2 ~ y 2 ~ ~ 2 =  q1I4w3= e'(4, 1 ) 1 p 4 .  

e2e3e4 = e;. 
In classical notation this is Jacobi's expression 

Written out fully this is 

1 c ( _ l ) m q m Z + n 2 + ( 4 ~ + i ) 2 / 4 =  1 (4n + 1 ) q ( 4 n + i ) 2 / 4 .  

Now replacing q by e-' and taking Mellin transforms of both sides, we obtain 

(-1)"[m2+ n2+(4p+ 1 ) ~ / 4 ] - ~  =4*~- , (2s  - 1). (19) 

Thus the three-dimensional sum on the LHS of (19) has been expressed in closed form, 
as was pointed out by Glasser (1973). Another example is 

[8(6, l)]'= O'(4, l ) l q 3  
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or 

ccc (-1)"""'P[(6m+1)2+(6n+1)2+(6p+1)2]-s=33-sLL_4(2S- 1). 

This result was given by Forrester and Glasser (1982). It is clear then that any 
combination of results in tables 1 and 2 which yield a result in table 4 will lead to the 
evaluation of a three-dimensional sum in terms of a single Dirichlet L-series. In table 
5 a list of some 60 such evaluations has been given. It is not known whether this list 
is exhaustive or not, or whether any given result is a trivial consequence of another. 
For example the fact that 

would enable many of the entries in table 5 to be augmented, but these have not been 
included. Several results in table 5 not immediately obvious from the entries in tables 
1 and 2 have been obtained as sign or Poisson transforms of other results. For integer 
s all these three-dimensional sums can be expressed exactly in terms of powers of CIT 

and surds, since L d ( 2 s -  1) = RcIT'"-'&? where R is a rationai number (see the 
appendix). 

Table 5. Three-dimensional sums evaluated in terms of single Dirichlet L-series. In this 
table 2 implies summation over all the indices m, n, p from --CO to m. We use the notation 
A =  L4 (2s -1 ) ,  E =  L3(2s-1) ,  C =(1+22-2")L--3(2~- l ) ,  D = ( l + 2 1 - 2 " ) L _ ~ ( 2 ~ - l ) ,  
E = L 4 2 S  - 1). 

(-1)"[4m2+4n2+(4p+ = A  

2 (-1)"'+"[8m2+8n2+(4p+ I)']-$ = A  

( - l ) n ' + n + p [ 8 m 2 +  16n2+ (4p+ 1j2]-' = A 

2 (-1)"[8m2+(4n+1)2+(4p+1)2]-'  =2-'A 

(- 1 )'"'"[(4m + 1 )2  + ( 4n + 1 )' + 8p2]-' = 2-"A 

(-l)'"+"[16m2+ (4n + 1)2+ (4p + I)']-' = 2-'A 

2 (-1)"+"+P[(6m+ 1I2+(6n+ 1)*+(6p+ 1)*]-'=3-'A 

( -  1)"+n+P[24m2 + (6n + 1 )'+ 2(6p + 1 )2]-' = 3T'A 

2 (-1)'"[(4m+ 1)2+(4n + 1)2+2(4p+ 1)*]-" =4-'A 

c ( -  1)"+"[(6m + 1)2 + 2(6n + + 3(4p + = 6-'A 

(-1) ,n+n+ [P(P+ l ) /21  [3(4m + 1 I2+2(6n + U2+ (6p+ 1)2]-' = 6-'A 

1 (-l)'n+n+[p(p+')'21[(6m + 1)2+4(6n + I ) * +  (6p + 
C (-1)"[4(3m + 1)2+4(3n + 1)'+(6p+ 1)2]-' =9-'A 

(-l)'ni"[72m2+8(3n + 1)'+ (6p+ 1j2]-' = 9Y'A 

(-1)"[8(3m + 1 ) 2  + 9(4n + 1)2 + (6p + 1)2]-" = 18-'A 

(-l)'"+c["'"-'1'21[16(3m+ 1)2+(6n+ 1 ) 2 +  (6p-k 1)*]-' = 18-'A 

( -  ) " ? + [ , I (  P I  - 11/21 [9(4m+l)*+(6n+1)*+8(3p+ 18-'A 

= 6-"A 

C(-1)"' cos(?) cos($) cos (~ ) [4m2+4n2+(2p+1) "  =2-'A 
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Table 5. (continued) 

I ( - l ) " "  cos - cos - [8m2+8n2+(2p+1)2 ] -"=2- 'A  (23 ('3 
c ( - l ) "  COS - COS - [8m2+(2n+i )2+(4p+1)2 ] - '=2-1 - sA (21m) (23 

I ( - l ) m + [ n ( n + 1 ) / 2 1 ~ ~ ~  - cos - cos - [ 1 6 m 2 + ( 2 n + 1 ) 2 + ( 2 p + l ) 2 ] - s  ('9") (23 ('3 
= 2-2-SA 

[2 - (-1)"'"](-1)P[24m2 + 72n2+ (6p + 1)2]-s = (1 + 3'-2' )A 

1 [2 -(-l)"'"](-1)p[8m2+24n2+(6p+ 1)2]-' = (1 +32-2s ) A  

1 [1+(-1)"'"](-1)P[6m2+ 18n2+(6p+l)2]-s  = 2(1 +31-2s )A 

[ 1 + (-1)"+"]( -1)P[2m2 + 6 n 2 +  (6p + 1)2]-' = 2(1 +32-2")A 

~ ( - l ) m + " + P [ 3 m 2 + 1 2 n 2 + ( 6 p + 1 ) 2 ] - ' =  B 

I ( - l )m+n+P[6mz+ (6n + 1)2+(6p+ l)']-" = 2TSB 

= 4-'B (- l)"'+,[ 12m2 + (6n + 1)2 + 3(4p + 
(-l)"'+n+[p(p+1)/21[ 12m2+3(4n + 1)2+(6p+ 1)']-" = 4CSB 

(-1)"+"[(6m + 1 ) 2 + ( 6 n  + 1 ) 2 + 6 ( 4 p +  1)']-'= 8K'B 

I (-1)"+"+P[3(4m+ 1)2+(4n  + 1)2+2(6p+ 1)2]-s = 8-'B 

(-1)"+"+P[3(4m + 1 ) 2 +  (6n + 1)2+4(6p+ 1)2]-s = 8-'B 

(-1)"[(6m + 1)2+3(4n + 1 ) 2 +  12(4p + 1)2]-s = 16-'B 

1 (-1)"+r"'"+1J/21[3(4m+1)2+(6n+ 1)2+12(4p+ 1)*]-'= 16-'B 

(-1)"[2(6m + 1)'+3(8n + 1)2+3(8p  +3)2]-s = 3 2 F B  

1 (-l)m+n+[p(p+11'21[3(8m + 1)'+3(8n +3)2+2(6p + 1)2]-s = 32-B 

I ( -  1)"'+"[ 12m2 + (6n + 1 )' + 3p2]-$ = C 

I (-1 )"+"[(6m + 1)'+ (6n + 1 )2  + 6p2]-' = 2-'C 

(-1)"'[(6m + 1)'+ 12n2+3(4p+ =4-"C 

(-1)m+[n(n+l)/21 [3(4m + 1 ) 2 + ( 6 n  + 1 ) 2 +  12p2]-' =4-'C 

c ( -  1)"[2(6m + 112 + 3(4n + 1)2 + 3(4p + 1)2]-s = 8-'C 

1 (-1)[m(m+lJ/21+[11(tl+l)/21[(6m+ 1)2+(6n+1)2+6(4p+ 1)2]-* = 8 - s c  

(- 1)  "1 +[,a [ ,1+ 11/21 [4 (6m+1)2+(6n+1)2+3(4p+1)2] -s=88- 'C 

1 (-1)"+"[12m2+(6n+ 1)2+12p2]-' = D 

1 (-1)"+"+P[24m2+24n2 + (6p + 1)2]-' = D 

(-1)"'+"[(6m + 1 ) 2 + ( 6 n  + 1)2+24p2]-s = 2- '0  
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5. Discussion 

Although an attempt to systematise these results has been made, it is evident that 
complete success has not been achieved. The evaluation of three-dimensional sums 
depends essentially on finding 0’ as a single term in Eulerian form, and no systematic 
way of doing this is known or is necessarily available. The factors of 24 also appear 
to play a central role in these matters. For example, it is not possible to put O(5, 1 )  
in Eulerian form. However, certain products of pairs and quadruplets of Os could be 
expressed in this way allowing the evaluation of some unknown two- and four- 
dimensional sums to be evaluated. For example, it was found that 

But Ramanujan in his notebooks has given (Berndt 1986) 

and the Mellin transform of the LHS of (19) is easily found. Hence 

CC [ ( 5 m + 1 ) ~ + ( ~ n + 2 ) ~ ] - ’ =  s-’(I  - 5 - s ) ~ , ( s ) ~ - , ( s ) .  

Many similar results involving double and quadruple sums have been found and will 
be reported on later. 
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Clearly the processes described might be carried further. Thus one could define 
members of 0" and X "  as, for example 

2 ( k n + I ) *  e y k ,  1 )  =E (kn + 1 )  q 

There would be no difficulty in finding the Mellin transforms of such quantities. Thus 

p ( 6 ,  1 ) = ~ ( - 1 ) " ( 6 n + 1 ) 2 q ( 6 " + 1 ) * = q ~ z _ ~ 2 q 5 z _ 7 2  q 72 +11 2 q 

MJ"(6, 1 ) = 1 - 5 2 ' - 2 - 7 2 ' - 2 + 1 1 2 s - 2 . .  . = L l 2 ( 2 ~ - 2 )  

. . .  

and the Mellin transforms of members of 0" and X "  obviously yield positive parity 
L-series of order 2s-2.  However, the problem of obtaining 0" as a single Eulerian 
product seems even more intractable than that for e', and so far no success with any 
0" has been achieved. If Eulerian or Jacobian expressions for 0" could be obtained, 
then certain five-dimensional sums could be found in closed form, and the progression 
to higher odd dimensions is obvious. 
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Appendix 

Dirichlet L-series with real characters are defined by 
s 

L d  = L d ( S ) = E X d ( k ) k - '  
I 

where d, an integer, will be referred to as the modulus and s is the degree or order if 
s is an integer. ,yd ( k )  is called a character modulo d if 

Xd(1) = 1 X d ( k ) = X d ( k + d )  

x d  ( m ) x d  ( n )  = x d  (mn 1 
X d ( k ) = O  

for all m, n 

if d, k are not relatively prime. 

The number of independent L-series depends on d as follows. Let P be odd and 
square-free. Then 

( i )  if d = P (e.g. 1 ,3 ,5 . .  . ) there is just one primitive L-series 
( i i )  if d = 4 P  (e.g. 4, 1 2 , 2 0 . .  . ) there is just one primitive L-series 
( i i i )  if d = 8 P  (e.g. 8,24 ,40 .  . . 1 there are two primitive 1-series 
(iv) if d = 2P, 2"P where a > 3 or P is not square-free (e.g. 2,6 ,9 ,  10.  . . ) there 

are no primitive L-series. 
The L-series divide into two types according to whether X d ( d  - 1) = *l. If X d ( d  - 

1) = 1, the L-series are said to have positive parity and are denoted Ld.  I f x d ( d  - 1 )  = - 1 ,  
the L-series are said to have negative parity and are denoted L - d .  The parity of an 
L-series is determined by d as follows. 
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If d = P = 1 (mod 4) the L-series has positive parity. 
If d = P = 3 (mod 4) the L-series has negative parity. 
If d = 4 P  with P = 3 (mod 4) the L-series has positive parity. 
If d = 4P with P = 1 (mod 4) the L-series has negative parity. 
If d = 8P there is an L-series of each type. 
I f s  is a positive integer then explicit formulae for L-d(2s - 1) and Ld(2s) may be 

established. They are 

where the Bernoulli polynomials B , ( x )  are defined by 

Since both d and n are positive integers, B,(l- n / d )  is a rational number, hence 

The following L-series appear in this paper: 
L-d(2s - 1) is Rd1/2r2s-1 and Ld(2s) is R‘d’’Zr2S, where R and R‘ are rational. 

L 1-1 - -’+22-’+33-’+4-’,.. (the Riemann zeta function) 

L- 3 -  - I-” - 2-’+4-’ - 5-' . . , 
L- 4 -  - 1-’ - 3-’+ 5-’ - 7-' . . . 
L- 8 -  -1-”+3-’-5-”77-’... 
L - 1-’ - 3 - s  - 5-3 +7-’. . . 

8 -  

L 12 - - 1-s-5-s- 7-’+ 11-” . . 
L-24= ~ ~ ’ + 5 ~ s + 7 ~ s + l l ~ ’ - 1 3 ~ ’ - 1 7 ~ ’ - 1 9 ~ ’ - 2 3 ~ ’ . .  . 
L 24 - - I-’ + 5-s -7-’- 11-’- 13-‘ - 1 7  + 19-’ +23-”. . . 
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